Exploring Measures of ‘Readability’ for Spoken Language: Analyzing linguistic features of subtitles to identify age-specific TV programs

Sowmya Vajjala and Detmar Meurers
LEAD Graduate School and Department of Linguistics, University of Tübingen

In a Nutshell

- We investigate if features from readability assessment can be used to identify age-specific TV programs
 - based on a corpus of BBC subtitles,
 - using a text classification approach.
- We show that the authentic material targeting specific age groups exhibits
 - a range of linguistic and psycholinguistic characteristics
 - that are indicative of the complexity of the language used.
- We achieve an accuracy of 95.9% (three-class task).

Motivation

- Reading, listening and watching TV are all ways to obtain information.
 - Some TV programs are created for particular age-groups (similar to graded readers).
- Audio-visual presentation and language are important factors in making age-specific TV programs.
- Is language by itself characteristic of the targeted age-group?
 - We hypothesize that the linguistic complexity of the subtitles is a good predictor.
 - We explore this hypothesis using features from automatic readability assessment.

Corpus

- The BBC started subtitling all scheduled programs on its main channels in 2008.
- Van Heuven et al. (2014) compiled a subtitles corpus from nine BBC TV channels.
- Subtitles of four channels are annotated: CBeebies, CBBC, News and Parliament.
- BBC subtitles corpus in numbers:
 - # texts
 - avg. tokens per text
 - avg. sent. len. (in words)

<table>
<thead>
<tr>
<th>Program Category</th>
<th>Age group</th>
<th># texts</th>
<th>avg. tokens per text</th>
<th>avg. sent. len. (in words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBEEBIES</td>
<td>< 6 years</td>
<td>4846</td>
<td>1134</td>
<td>45</td>
</tr>
<tr>
<td>CBBC</td>
<td>< 12 years</td>
<td>4540</td>
<td>2701</td>
<td>6.9</td>
</tr>
<tr>
<td>Adults (News + Parliament)</td>
<td>> 12 years</td>
<td>3767</td>
<td>4182</td>
<td>12.9</td>
</tr>
</tbody>
</table>
- We use a balanced subset consisting of 3776 texts per class.

Features

- Lexical Features
 - lexical richness features from Second Language Acquisition (SLA) research
 - part-of-speech density features
 - traditional features and formulae
 (extracted using Stanford Tagger)
- Syntactic Features
 - syntactic complexity features from SLA research.
 - other parse tree features
 (extracted using Berkeley parser and Tregex pattern matcher)
- Morphological properties of words (from Celex database)
- Age-of-Acquisition (AoA) features from various norms from (Kuperman, Stadthagen-Gonzalez & Brysbaert, 2012)
- abstractness and other word characteristics from the MRC psycholinguistic database
- Avg. number of senses per word (obtained from WordNet)

Setup and Experiments

- We explored several classification algorithms in WEKA: SMO, J48 decision tree, Logistic Regression, etc.
 - SMO marginally outperformed the others (1–1.5%), so all further experiments were performed using SMO.
- Classification Accuracy for different feature sets:
 - Features (1)
 - Accuracy
 - Sentence Length baseline (1) | 71.4%
 - All Features (152) | 95.9%
- Accuracy for different feature selection methods:
 - ChSubsetEval (41) | 93.9%
 - Information Gain, top-10 features (10) | 84.5%
 - ChSubsetEval on top-10 features (6) | 84.1%
- Confusion matrix for the model with all 152 features:

<table>
<thead>
<tr>
<th>classified as</th>
<th>CBeebies</th>
<th>CBBC</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBeebies</td>
<td>3639</td>
<td>156</td>
<td>1</td>
</tr>
<tr>
<td>CBBC</td>
<td>214</td>
<td>3526</td>
<td>36</td>
</tr>
<tr>
<td>Adults</td>
<td>2</td>
<td>258</td>
<td>3716</td>
</tr>
</tbody>
</table>

Conclusions

- The rich (psycho)linguistic feature set performs very well, achieving a classification accuracy of 95.9%.
- Single most predictive feature: AoA (82.4%), but removing this feature does not affect the accuracy.
 ⇒ The age-specific nature of authentic material is reflected in a wide range of (psycho)linguistic properties.
- For practical tasks, accuracies above 90% can also be achieved with feature subsets and relatively short texts.

Outlook:

- Explore the impact of a parser tuned to spoken language.
- Perform more qualitative error analysis to identify where the approach fails and why.