Foundations	Hobbs 1993	Raina 2005 000	Conclusion O	References

Abductive Reasoning for Natural Language Semantics

Johannes Dellert

Seminar für Sprachwissenschaft, Universität Tübingen

13.07.2009

イロン イロン イヨン イヨン 三日

1/24

Foundations ●○○	Hobbs 1993	Raina 2005 000	Conclusion O	References
What is abduction?				
What is al	oduction?			

Abduction

- inference to the best explanation ("guessing why")
- from $A \rightarrow B$ and B conclude A, contrary to classical logic
- introduced to modern logic by Charles Sanders Peirce
- prior to induction and deduction in scientific reasoning: abduction: hypothesis building (the DETECTIVE) induction: rule inference (the SCIENTIST) deduction: theorem proving (the MATHEMATICIAN)

Example

I know that the streets become wet when it rains. I observe that the streets are wet, so (I guess) it must be raining.

Foundations ○●○	Hobbs 1993	Raina 2005 000	Conclusion O	References
Abduction in Artificial Inte	lligence			
Abduction i	n Artificial Int	elligence		

Fault diagnosis

Given a (weighted) map from issues to the symptoms they cause, infer from a symptom the problem that might have caused it.

Automated Planning

Given a logical theory relating action occurrences with their effects, finding a plan for achieving a desired state amounts to abducing a set of literals implying that the final state is the goal state.

Belief revision

Avoid generating inconsistency when enlarging a set of beliefs by only considering explanations, and in a fuzzy logic, prefer the most explanatory model for encountered facts.

Foundations ○○●	Hobbs 1993	Raina 2005 000	Conclusion O	References
Abduction in Natural	I Language Processing			
Abductio	n in Natural La	anguage Pro	cessing	

Interpretation via Abduction

View the interpretation process as seeking to provide the best explanation of why a sentence would be true.

Concept of Communication

Communication constitutes a bid to extend the area of mutual beliefs of speaker and hearer by some beliefs of the speaker.

Classical and Abductive Reasoning Combined

- for beliefs stated explicitly, classical reasoning can be used
- abductive reasoning on top can explain accomodation, disambiguation and reference resolution effects

Foundations	Hobbs 1993	Raina 2005	Conclusion O	References

Hobbs et al. 1993: Interpretation as Abduction

Ideas

- weighted abduction assigns costs to building hypotheses
- interpret a sentence by
 - trying to prove it from mutual knowledge
 - allowing for coercion
 - merging redundancies where possible
 - making assumptions where necessary

Claims

- abduction allows for very simple conceptualization of meaning
- making the minimal necessary assumptions predicted by weighted abduction accounts for local pragmatics phenomena
- interpretation as abduction and parsing as deduction allow for an elegant integration of syntax, semantics and pragmatics

Foundations	Hobbs 1993 ●○○○○○○○○○○	Raina 2005 000	Conclusion O	References
Solving Local Pragmatics P	roblems			
Solving Loca	al Pragmatics	Problems		

Notational Convention (Davidsonian Reification of Eventualities)

- p(x) means that p is true of x
- p'(e,x) means that e is **the eventuality of** p being true of x
- axiom schema: $\forall x \ p(x) \Leftrightarrow \exists e(p'(e, x) \land Rexists(e))$
- **Rexists**(e) states true existence, $\exists e$ platonic existence of e

Example of Axiom Eventualization

intuitive form: $\forall x(p(x) \rightarrow q(x))$ will be written: $\forall e_1 \forall x(p'(e_1, x) \rightarrow \exists e_2 \ q'(e_2, x))$ stronger variant: $\forall e_1 \forall x(p'(e_1, x) \rightarrow \exists e_2 \ (q'(e_2, x) \land gen(e_1, e_2)))$ iff the eventuality e_1 exists **by virtue of the fact that** e_2 exists

Foundations	Hobbs 1993 ○●○○○○○○○○○	Raina 2005 000	Conclusion O	References
Solving Local Pragmatics Pr	oblems			
Solving Loca	al Pragmatics	Problems		

Example report

(1) Disengaged compressor after lube-oil alarm.

Problem 1: Reference Resolution

We must detect that the alarm was activated by the compressor. For this we need background knowledge or previous context.

Problem 2: Compound Nominals

The **implicit relation** between "lube-oil" and "alarm" is $\lambda x \lambda y [y \text{ sounds when the pressure of } x \text{ drops too low}];$ approximate this using $\exists o \exists a \exists nn(loil(o) \land alarm(a) \land nn(o, a))$ and axioms such as $\forall x \forall y (part(x, y) \rightarrow nn(x, y))$.

Foundations	Hobbs 1993	Raina 2005 000	Conclusion O	References		
Solving Local Pragmatics Problems						
Solving L	ocal Pragmatic	s Problems				

Example report

(1) Disengaged compressor after lube-oil alarm.

Problem 3: Syntactic Ambiguity

Does "after" refer to the compressor or the disengaging event? ... $\exists e \exists c \exists y \exists a \dots \land after(y, a) \land y \in \{c, e\} \land \dots$

Problem 4: Metonymy

Predicates impose **constraints on arguments**; violation requires coercion into something that fulfills the constraints. Example: $after(e_1, e_2) : event(e_1) \land event(e_2)$ Express similarity notion using *rel* predicate: ... $\exists k_1 \exists k_2 \exists y \exists a \dots \dots \land after(k_1, k_2) \land event(k_1) \land rel(k_1, y) \land event(k_2) \land rel(k_2, a) \dots$ Possible coercions: $\forall x \ rel(x, x), \ \forall x \forall y (part(x, y) \rightarrow rel(x, y)), etc.$

Foundations	Hobbs 1993 ○○○●○○○○○○○	Raina 2005 000	Conclusion O	References
Weighted Abduction				
Weighted	Abduction			

Problem: Selecting the Right Explanation

- from $\forall x(p(x) \rightarrow q(x))$ and q(A) we want to infer p(A)
- we may have to select from many such p(A)

Selection Criteria

- p(A) must be consistent with the rest of what one knows
- simplicity, parsimony: p(A) should be as small as possible
- consilience: q(A) should be as big as possible (explain a lot)

Problem: Informativeness-Correctness Tradeoff

- we usually want the least specific assumption (correctness)
- but sometimes we could be more specific (informativeness)

Foundations	Hobbs 1993 ○○○○●○○○○○○	Raina 2005 000	Conclusion O	References
Weighted Abduction				
Weighted	Abduction			

Requirements for an Inference Scheme

- goal expressions should be assumable (at varying costs)
- assumptions at various levels of specificity should be possible
- allow more economic proofs by exploiting natural redundancy

Weighted Abduction

- give an assumability cost to every conjunct in the LF
- pass back costs to antecedents in clauses by assigning weights: $P_1^{w_1} \land P_2^{w_2} \rightarrow Q$; $c(Q) = c \Rightarrow c(P_1) = w_1c \land c(P_2) = w_2c$
- allow synthesis with minimal cost assignment: $\exists x \exists y (q(x) \land q(y)) \Rightarrow \exists zq(z) \text{ if not inconsistent, and}$ $c(q(z)) = \min\{c(q(x)), c(q(y))\}$ to favour minimality.

Foundations	Hobbs 1993 ○○○○○●○○○○○○	Raina 2005 000	Conclusion O	References
Weighted Abduction				
Weighted	Abduction			

Guiding Specificity by Antecedent Weights

- $\hfill more specific abduction if antecedent weights sum up to <math display="inline"><1$
- $\hfill less specific abduction if antecedent weights sum up to <math display="inline">>1$
- assign weights according to "semantic contribution"

Examples

•
$$P_1^{0.6} \wedge P_2^{0.6} \rightarrow Q$$
: only assume Q, total cost: 1.0

•
$$P_1^{0.6} \wedge P_2^{0.6}
ightarrow Q, P_1$$
: only assume P_2 , total cost: 0.6

■
$$P_1^{0.6} \land P_2^{0.6} \rightarrow Q_1, P_2^{0.6} \land P_3^{0.6} \rightarrow Q_2$$
, derive $Q_1 \land Q_2$:
only assume $P_1 \land P_2 \land P_3$, total cost: 1.8

• $\forall x (car(x)^{0.8} \land notop(x)^{0.4} \rightarrow convertible(x))$

Foundations	Hobbs 1993 ○○○○○●○○○○○	Raina 2005 ୦୦୦	Conclusion O	References
Weighted Abduction				
"Et cetera"	Propositions			

Circumscriptive axioms

- while back-chaining, keep information as specific as possible
- introducing axioms $\forall x(species(x) \rightarrow genus(x))$ is wrong
- replacing by a biconditional helps: $\forall x(genus(x) \land differentiae(x) \leftrightarrow species(x))$
- weights allow to quantify the precision degree of axioms

Examples

- $\forall x (fluid(x)^{0.6} \land etc(x)^{0.6} \leftrightarrow lube oil(x)$ "if we talk about a fluid, we possibly refer to lube oil"
- ∀x(mammal(x)^{0.2} ∧ etc(x)^{0.9} ↔ elephant(x)
 "one specific way of being a mammal is being an elephant"

Foundations	Hobbs 1993 ○○○○○○●○○○○	Raina 2005 000	Conclusion O	References			
Some Local Pragmatics Pl	Some Local Pragmatics Phenomena						
Definite Ret	ference						

Example sentences

I bought a new car last week.

- (2) *The vehicle* is already giving me trouble.
- (3) *The engine* is already giving me trouble

In both cases, we use an axiom relating concepts for abduction.

(2)
$$\forall x(car(x) \rightarrow vehicle(x))$$

(3)
$$\forall x(car(x) \rightarrow \exists y engine(y, x))$$

Interpret the article by giving high assumption costs to vehicle(x) and $\exists y \ engine(y, x)$, thus force resolution and and use the minimal cost proof to find the most salient appropriate entity.

Foundations	Hobbs 1993 ○○○○○○○●○○○	Raina 2005 000	Conclusion ○	References
Some Local Pragmatics F	Phenomena			
Distinguish	ing the Given	and the Ne	2W	

Example

(4) John walked into the room. The chandelier shone brightly.

- LF contains $\exists x \ chandelier(x)$, which we want to prove
- Assume that in the knowledge database, we have $\forall l(light(l) \land has\text{-}branches(l) \rightarrow chandelier(l))$
- We can prove the first antecedent with the following axiom: $\forall r(room(r) \rightarrow \exists l(light(l) \land in(l, r)))$
- room(R) is part of the logical form, we can prove it at no cost
- for second antecedent, we must pay because we cannot explain it with the given information
- new information: the light in the room John walks into has several branches (and shone brightly)
- just assuming $\exists x \ chandelier(x)$ would have been more costly

Foundations	Hobbs 1993	Raina 2005 000	Conclusion O	References		
Some Local Pragmatics Phenomena						
Lexical Am	biguity					

Example

(5) John wanted a loan. He went to a bank.

- LF contains $\exists x \ bank(x)$, which we want to disambiguate
- We use two bank predicates, where bank₁ is true of financial institutions, and bank₂ is true of river banks, with ∀x(bank₁(x) → bank(x)) and ∀x(bank₂(x) → bank(x))
- Axioms about banks are stated with either $bank_1$ or $bank_2$: $\forall x (financial-institution(x) \land etc(x) \rightarrow bank_1(x))$ $\forall z (river(z) \rightarrow bank_2(z) \land borders(x, z))$
- we additionally need the following axiom: $\forall y (loan(y) \rightarrow \exists x financial-institution(x) \land issue(x, y))$
- for the minimum-cost proof, back-chaining will select bank₁

Foundations	Hobbs 1993 ○○○○○○○○●○	Raina 2005 000	Conclusion O	References			
Some Local Pragmatics P	Some Local Pragmatics Phenomena						
Compound	Nominals						

Example

(6) the turpentine jar

- LF: $turpentine(y) \land nn(y, x) \land jar(x)$
- we want to find the relation between turpentine and jar
- assume the following axioms are in our knowledge base: $\forall y(liquid(y) \land etc_1(y) \rightarrow turpentine(y)),$ $\forall e_1, x, y(function(e_1, x) \land cont'(e_1, x, y) \land liquid(y) \land$ $etc_2(e_1, x, y) \rightarrow jar(x)), \forall e_1, x, y(cont'(e_1, x, y) \rightarrow nn(y, x))$
- minimal proof will identify the liquid *turpentine* with the liquid implicit in *jar*, and it will take the *nn* relation to be the *cont* relation, resulting in a correct compound analysis

Foundations	Hobbs 1993 ○○○○○○○○○●	Raina 2005 000	Conclusion O	References
Integrating Syntax, Semantics, and Pragmatics				

Integration with Prolog-Style Parsing as Deduction

Example

(7) The Boston office called.

- will be interpreted correctly via the following rules: $\forall w_1, w_2, y, p, e, x(np(w_1, y) \land verb(w_2, p) \land p'(e, x) \land$ $rel(x, y) \land Req(p, x) \rightarrow s(w_1, w_2, e))$ $\forall w_1, w_2, q, r, y, z(det(the) \land noun(w_1, r) \land noun(w_2, q) \land$ $r(z) \land q(y) \land nn(z, y) \rightarrow np(the w_1 w_2, y)),$ $\forall x(person(x) \rightarrow Req(call, x))$
- we simultaneously prove that we have an interpretable sentence and that the eventuality *e* is its interpretation
- as a result, we get a logical form that makes sense: $\exists x, y, z, e(call'(e, x) \land person(x) \land rel(x, y) \land office(y) \land Boston(z) \land nn(z, y))$

via Learning and Abductive Reasoning

Ideas

- assumption costs can be inferred by machine learning
- WordNet as source for theorems used in abduction
- if one sentence follows from the other using only low-cost leaps of faith, it is likely that entailment holds

Results

- their inferencing system took part in PASCAL RTE 2005
- achieved the highest confidence weighted score
- better linguistic modelling led to even better results in subareas, can actually make use of more elaborate resources

Foundations	Hobbs 1993	Raina 2005 ●○○	Conclusion O	References
Assumption Cost Model				
Assumption	Cost Model			

Concept of Assumption

- assumptions are unifications of two terms
- assumption cost function determined by similarity measures

Components of the cost function

- predicate "similarity" based on WordNet proximity
- predicate compatibility: identity of pos, word stem, NE tag of the words represented by the predicates
- argument compatibility: use features from dependency structure and penalize e.g. matching a subject with an object
- constant unification: sum up constant distances
- word frequency: inversely proportional to relative word frequency of hypothesis predicate in English text

Foundations		bbs 1993		Raina 2005 ○●○	Conclusion O	References
Learning Assumpt	ion Costs					
	•		~			

Learning Assumption Costs

What do we learn?

the weighting factors for components in the cost function

What is the idea?

- take a training set of desired proofs
- determine weighting that leads to minimal costs over all proofs

How can we compute this?

- exact optimization is intractable because of recursion
- use an iterative approximation scheme that starts out with a fixed proof and gradually explores other weightings
- in each iteration, lower the costs for successful assumptions and increase the costs for misleading assumptions by manipulating the weights

Foundations	Hobbs 1993	Raina 2005 ○○●	Conclusion ○	References
Results				
Reculte				

Confidence Weighted Score (CWS)

- sort all confidence values and compute average precision
- assigns higher values to better calibrated predictions

Performance of the overall best theorem prover								
In total: CWS of 0.651, which was competitive								
Class	CD	IE	IR	MT	PP	QA	RC	
Acc.	79.3	49.2	50.0	58.3	46.0	50.0	53.6	
CWS	0.906	0.577	0.559	0.608	0.453	0.485	0.567	

Hallmark of the Approach

- can produce short and human-readable justifications
- this might be useful for applications such as QA

Foundations	Hobbs 1993	Raina 2005 000	Conclusion ●	References
Abduction				
Summary				

Abduction in NLP

- abduction is inference to the best explanation
- can explain accomodation and reference resolution effects
- use in RTE allows production of human-readable justifications

Weighted Abduction

- model best explanations by imposing assumption costs
- costs can also be used to steer specificity

Learning Assumption Costs

- abductive theorems can be inferred from WordNet
- training with a set of desired proofs to learn costs
- better assumption cost models measurably improve results

Foundations	Hobbs 1993	Raina 2005 000	Conclusion ○	References
Abduction				
References				

- Jerry R. Hobbs, Mark Stickel, Douglas Appelt, and Paul Martin. Interpretation as abduction. *Artificial Intelligence*, 63:69–142, 1993.
- [2] Jerry R. Hobbs, Mark Stickel, Paul Martin, and Douglas Edwards. Interpretation as abduction. In *Proceedings of the* 26th Annual Meeting of the Association for Computational Linguistics, pages 95–103, Buffalo, New York, USA, June 1988. Association for Computational Linguistics.
- [3] Rajat Raina, Andrew Y. Ng, and Christopher D. Manning.
 Robust textual inference via learning and abductive reasoning.
 In *Proceedings of AAAI 2005*, pages 1099–1105, 2005.

Foundations	Hobbs 1993	Raina 2005 000	Conclusion ○	References
Abduction				
The End				

Thank you!