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1 Introduction

Model generation is a discipline of automated reasoning that is concerned with
the explicit computation of models for logical formulae. The tools developed
in the field therefore offer a positive handle on the satisfiability of logical theo-
ries. Model generation is potentially very useful because it provides direct and
automated access to models of axiomatizations and countermodels of theorems,
which often help in developing interesting mathematical insights. Unfortunately,
the enormous complexity of the task has so far prevented model generators from
becoming ready for wide adoption.
The main purpose of this work is to explore and characterize the two main
paradigms of model generation for the purposes of Natural Language Processing
(NLP), i.e. analytical tableaux and constraint solving. The focus lies on the
severe challenges that every approach to model generation must face, and work-
around techniques from both paradigms are presented. Less emphasis will be
put on the technical details of existing model generation systems.
The basic notions of the field are introduced in Chapter 2, which also estab-
lishes the notational background for the considerations of this paper. Chapter
3 introduces the tableau-based approach to model generation and explains its
merits for model generation in NLP. More recent approaches within the frame-
work of constraint programming are the subject of Chapter 4, followed by some
discussion of the paradigm’s promises and shortcomings.
The last three chapters constitute the core of this work, where the two main chal-
lenges of model generation are discussed in some detail. Chapter 5 explores some
approaches to mitigating the omnipresent problem of combinatorical explosion,
and how it interacts with the two frameworks. Chapter 6 then elaborates on
specialized heuristics for model generation in NLP and issues of implementing
them within both frameworks. Chapter 7 reviews past attempts to combine the
best of both approaches and presents some new ideas in that area with respect
to NLP.
Although formal semantics tends to rely on variants of higher-order logic as
technical machinery, the developments in computational semantics have con-
centrated on first-order logic, mainly because it is taken to be the most pow-
erful logic for which inference problems can still be considered computationally
tractable in many instances. I will not deviate from this tradition, confining the
discussion here to first-order model generation techniques. However, some of
the ideas and techniques I will present will also be useful for model generation
with other logics.
To understand the main points of this work, some background in computational
semantics is required. For a thorough yet accessible introduction to the field,
the reader is referred to Blackburn & Bos (2005). In addition, knowledge of at
least the basic concepts of automated reasoning is necessary to understand all
the technical details.
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2 Model Generation

2.1 First-Order Structures and Satisfiability

We start by repeating some basic terminology. The notation that I will use
throughout this paper is largely that of Konrad (2004).
Given a first-order language, an interpretation is a pair I = 〈JK,D〉 consisting
of an interpretation function JK that maps predicate and constant symbols to
predicates and constants of the appropriate types, and a domain D of individuals
that provides entities for the interpretation of constants.
A model of a logical theory T is an interpretation of the symbols in T such
that T becomes true. A Herbrand model is a model in which all constants
and other terms are interpreted as themselves. In a classical first-order theory,
Herbrand models are specified completely by the set of all ground literals that
are satisfied in it. This means we can identify each Herbrand model with its
representation as a set of ground literals.
We will usually only consider Herbrand models, and define a Herbrand model
M by its set of positive literals Pos(M) alone. All other literals will simply be
interpreted as false by the interpretation function of M.
A finite model is a model with a finite domain. The model generation methods
that will be discussed here are limited to finding such finite models. It is possible
to weaken this limitation to a certain degree, but the resulting methods are very
complicated and beyond the scope of this work.
A logical theory T is satisfiable if it has a model M. T is said to possess the
property of finite satisfiability if it has a finite model.

2.2 Model Minimality

One of the central concepts in the theory of model generation is the notion
of minimality. Many first order theories possess infinitely many models, which
makes it worthwile to structure the space of possible models in a way that
highlights the kind of models that is usually most useful. For this purpose,
different notions of model minimality have been introduced. Here I only repeat
the definitions that will become relevant, and refer to Konrad (2004), section
2.4, for an overview of the contexts in which they evolved.
A model M for a theory T is called subset-minimal iff for all models M′ of
T we have Pos(M′) ⊆ Pos(M) ⇒ Pos(M′) = Pos(M). Subset minimality is
connected to circumscriptive reasoning, whose logical consequence relation can
be expressed as evaluation in all subset-minimal models.
A model M for a theory T is called domain-minimal iff there is no model of
T with a smaller domain of individuals. The advantage of domain minimality
is that its verification is computationally a lot more tractable.
The third notion of model minimality is that of predicate-specific minimal-
ity. This is similar to subset minimality, but it can be defined for a specific
predicate symbol P . Only the number of positive literals headed by the predicate
symbol P is then taken into account when determining subset minimality. This
type of minimality is often used in artificial intelligence tasks such as system
diagnosis, where it mirrors the assumption that e.g. the number of components
that act abnormally can be assumed to be the minimum that still explains the
erroneous system behavior.

Johannes Dellert Challenges of Model Generation for NLP
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2.3 Models in Natural Language Understanding

The relatively young field of computational semantics has mainly confined itself
to the art of automatically computing adequate logical representations of the
meanings of natural language sentences in the tradition of formal semantics.
The question what can be done with these representations has not yet recieved
much attention. This especially applies to model generation, partially because
the field is only beginning to produce useful tools, and partially because these
tools have some properties that limit their usefulness.
A good overview of the current problems and the promises of model generation
for natural language understanding can be gained from Bos (2003).
The first important application area for model generators is that they can can be
used in parallel with theorem provers to decide many first-order theories, which
makes them a useful tool e.g. in consistency and informativity checking. In
addition, the model representations that result from the process are interesting
in their own right, as they turn out to contain much of the information required
for natural language understanding.
A model of the logical representation of a discourse is often a relevant model of
the situation described by the discourse. These models are expected to capture
many relevant aspects of the listener’s mental representation of the described
situation. As a first application, such models have been shown to be useful for
answering questions via model checking, as in Blackburn & Bos (2005).

2.4 Catering for Special Needs

The challenges in applying existing model generation technology to computa-
tional semantics are manifold, and I will confine myself here to the most press-
ing issues that have prevented model generation from gaining much popularity.
These issues need to be kept in mind when thinking about possible ways of
building model generators that are more useful for NLP.
The major technical hurdle is that it would be desirable to be able to generate
models for larger discourses. Off-the-shelf model generators cannot generate
models with domain sizes larger than about 20, which effectively limits the kind
of situations that can be modeled to mere toy examples. Model generation
technology as it stands therefore cannot be used to generate models of interesting
discourses, which severely limits is usefulness.
Domain-minimal model generation as implemented by every model generator on
the market seems very useful for semantics, as we would normally want to ensure
that no redundant structure is present in the models of a discourse. However, a
domain-minimal model generator tries to introduce as few entities as logically
possible. It will therefore always assume entities to be identical as long as this
causes no contradiction, which tends to lead to undesired results.
Often, we already have a lot of knowledge about a situation that can easily be
expressed by a model, and which we only want to extend by the information con-
tained in some natural language description. This kind of incremental model
generation is unfortunately not possible using the existing tools. This means
that to enlarge a model by new information, we have to describe the model via
a restrictive first-order theory, enlarge that theory by the new information, and
apply the model building process again. This is of course very inefficient and
inevitably transcends the capacities of current model generators very quickly.

Johannes Dellert Challenges of Model Generation for NLP
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3 Tableau-Based Approaches

Tableaux calculi are one of the most influential and successful approaches to
automated reasoning. For a thorough introduction that also includes a lot of
background information, the reader is referred to Hähnle (2001). Some basic
concepts of automated reasoning, such as skolemization and the ideas behind a
tableau calculus for refutation, must be presupposed here for reasons of brevity.

3.1 Analytical Tableaux

In the notation that I will use here, the following rules define the propositional
fragment of a classical tableau calculus:

¬¬φ
φ

φ ∧ ψ
φ
ψ

¬(φ ∨ ψ)
¬φ
¬ψ

¬(φ→ ψ)
φ
¬ψ

φ ∨ ψ
φ ψ

¬(φ ∧ ψ)
¬φ ¬ψ

φ→ ψ
¬φ ψ

The first group of rules is for obvious reasons also called conjunctive or non-
branching, while members of the second group of rules are called branching or
disjunctive rules. Non-branching rules are commonly referred to as α-rules,
while the branching rules are called β-rules.
Rules for the treatment of universal and existential quantification in tableaux are
traditionally called γ-rules and δ-rules, respectively. The γ-rule of analytical
tableaux is based on introducing skolem constants, whereas the γ-rule non-
deterministically substitutes ground terms:

(∀)∀x.γ(x)
γ(t)

, where t is an arbitrary ground term

(∃)∃x.δ(x)
δ(c)

, where c is new constant symbol

The advantage of analytical tableaux is that we have skolem functions of zero
arity because the quantification rule eliminates the dependencies on quantifiers
with higher scope and their bound variables.
Unfortunately, analytical tableaux have serious efficiency issues mainly caused
by the very non-deterministic γ-rule. At the point of application, not much in-
formation is available that could lead to a useful guess for the instantiation. This
problem was mitigated a lot by the development of free variable tableaux,
which rely on skolem functions and unification to guide instantiations in ways
that close as many tableaux branches as possible.

3.2 Tableau-Based Model Generation

A saturated branch of an analytical tableau is a branch that cannot be ex-
tended any more and failed to be closed during tableau expansion. The fact
that the literals on such branches can directly be interpreted as descriptions of
models is the main observation made by Boolos (1984) in his pioneering work.
The domain of such a model corresponds to the skolem constants we introduced
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while extending the branch. This means we are not any longer interested in
closed branches that would indicate contradictions, but in finding saturated
branches, each of which represents a model.
Many of the optimization techniques that were developed for tableaux in order
to speed up refutations are not helpful in model generation. This largely also
applies to the techniques that helped to make automated theorem proving fea-
sible, e.g. to skolemization and unification. That these methods cannot be used
to speed up model generation mirrors the fact that first-order satisfiability is
inherently a harder problem than first-order validity, being not even recursively
enumerable, as e.g. shown in Hedman (2004, p. 412ff).
But the main reason against using full free-variable tableaux in model build-
ing is that whereas skolemization with skolem functions maintains refutational
completeness, it unfortunately breaks completeness for finite satisfiability.
An instance of this is the following example by Konrad (2004): The formula
P (a, a) ∧ ∀x(P (x, x) → ∃y(P (x, y))) obviously has a finite Herbrand model.
But skolemization turns this into P (a, a) ∧ ∀x(P (x, x) → P (x, f(x))), which
only has infinite Herbrand models.
For ease of exposition, I introduced tableaux for arbitrary first-order formulae
here. In order to shorten lenghty completeness proofs and to get more efficient
implementations, state-of-the-art tableaux calculi usually convert input formu-
lae into some kind of clausal form and then only operate on (ground) clauses.
A hyper tableau is a ground clause tableau where extension steps for a branch
must be weakly connected to the current branch. The first calculi known under
the name of model generation (Manthey & Bry (1988), Fujita & Hasegawa
(1991)) were essentially variants of hyper tableau calculi. Clauses in a hyper
tableau calculus have a rule format, and literals are selected via a fair selection
function. A typical selection function for many hyper tableau calculi selects
exactly the negative literals in a clause. This variant runs under the name of
positive hyper tableaux and was first presented in Bry & Yahya (2000).
EP tableaux as defined by Bry & Torge (1998) are a variant of positive hyper
tableaux for non-clausal first-order logic without function symbols that is com-
plete for finite satisfiability. Their calculus operates on PRQ formulas (Positive
with Restricted Quantifications), which removes the need for free variables. A
modified δ-rule that enumerates the current model domain provides the branches
with enough information for explicit model construction. Using a fair computa-
tion rule, it is possible to ensure that the method detects all finite term domain
models.
The OletinMB system as presented in Dellert (2010) is in essence an implemen-
tation of the EP calculus that works on arbitrary input formula at the expense
of some performance. It is an experimental system with a very flexible interface
for defining various heuristics, yet it also includes optimizations that allow it
to compete with the performance of other model generation systems on many
theories over function-free signatures.

3.3 Why Tableaux Are Useful

The main reason for the popularity of tableaux approaches is that they are one
of the most human-readable ways of representing automated inferences. The
clear data structure and explicit representation make the mechanisms involved

Johannes Dellert Challenges of Model Generation for NLP
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in finding proofs or models a lot more transparent than within other calculi,
though often at the cost of a somewhat redundant notation.
In the context of model building, tableaux methods are especially popular be-
cause each branch can be interpreted as a partial model, and tableaux expan-
sion thus corresponds to stepwise model expansion. This means we can observe
many properties of models already while they are being generated, which is
conducive to the development and implementation of advanced heuristics.
Analytical tableaux additionally have rather advantageous properties in the con-
text of incremental model building. Unlike in free-variable tableaux, branches
can be modified and extended independently of the other branches, which means
that it is not necessary to keep the entire tableau in memory. Instead, a simple
agenda of open branches is sufficient to represent all the relevant information
contained in an analytical tableau at any point.
This means that the relation between open tableau branches and partial models
also holds in the other direction. Partial models can be interpreted as open
tableau branches which can be inserted into the agenda in order to be subse-
quently enriched with the information from an extended theory, emulating the
tableau construction process that would have resulted if the added formulae had
been part of the theory all along.

4 Constraint-Based Model Generation

Constraint programming as a research area is concerned with efficiently solving
computable sets of relations between finite sets of variables. Constraints offer a
very natural way of expressing combinatorial problems in many different areas,
and the development of efficient constraint solvers has become one of the major
trends in symbolic computing. For an early, but still excellent introduction to
the field the reader is referred to Marriott & Stuckey (1998).

4.1 First-Order Satisfiability as a Constraint Problem

One of the most popular types of constraint programming is finite domain
modeling, where variables range over finite domains. A satisfiability problem
for a propositional formula can very straightforwardly be translated into an
instance of Integer Programming, where variables range over finite sets of
integers. This is achieved by introducing for every subformula a variable ranging
over integer values that represent the possible truth values, and to impose con-
straints on these variables that represent the semantics of propositional logic.
For example, the following set of conditions is necessary and sufficient for any
model M of the propositional formula a ∨ (b ∧ (c ∨ d)):

JaKM ≥ 0, JaKM ≤ 1, Ja ∨ (b ∧ (c ∨ d))KM = 1,
JbKM ≥ 0, JbKM ≤ 1, Ja ∨ (b ∧ (c ∨ d))KM = min(JaKM, Jb ∧ (c ∨ d)KM),
JcKM ≥ 0, JcKM ≤ 1, Jb ∧ (c ∨ d)KM = max(JbKM, J(c ∨ d)KM),
JdKM ≥ 0, JdKM ≤ 1, Jc ∨ dKM = min(JcKM, JdKM)

For a given domain size, this approach can be generalized to first-order satis-
fiability reasoning by means of flattening. As in Konrad (2004, section 3.4.4),
translation rules can be notated by means of signed formulae Vφ : φ where
φ is a formula and Vφ is a variable associated with the interpretation JφK. For

Johannes Dellert Challenges of Model Generation for NLP
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a domain of given size n we introduce the constant symbols c1, . . . , cn. The
more general scheme presented by Konrad then boils down to the following set
of rules for translating the satisfiability problem for a first-order formula φ into
an instance of Integer Programming, starting with Vφ : φ and Vφ = 1:

Vφ1∧φ2 : φ1 ∧ φ2

Vφ1 : φ1

Vφ2 : φ2

Vφ1∧φ2 : min(Vφ1 , Vφ2)

Vφ1∨φ2 : φ1 ∨ φ2

Vφ1 : φ1

Vφ2 : φ2

Vφ1∨φ2 : max(Vφ1 , Vφ2)

Vφ1→φ2 : φ1 → φ2

V¬φ1 : ¬φ1

Vφ2 : φ2

Vφ1→φ2 : max(V¬φ1 , Vφ2)

V¬ψ : ¬ψ
Vψ : ψ

V¬ψ : 1− Vψ

V1 : a
V2 : a
V1 = V2

V∀x.φ(x) : ∀x.φ(x)
Vφ(c1) : φ(c1)

...
Vφ(cn) : φ(cn)

V∀x.φ(x) : max(Vφ(c1), . . . , Vφ(cn))

V∃x.φ(x) : ∃x.φ(x)
Vφ(c1) : φ(c1)

...
Vφ(cn) : φ(cn)

V∃x.φ(x) : min(Vφ(c1), . . . , Vφ(cn))

Each solution for the resulting instance of Integer Programming describes a
model of φ by the values assigned to the variables Va where a is atomic. Proofs
of refutation soundness and of completeness for finite satisfiability can be found
in Section 3.4.8 of Konrad (2004).

4.2 Overview of Constraint Technology

With a translation of the model generation problem into some constraint lan-
guage at hand, the next step is to find an efficient constraint solver for this kind
of problem. This section gives an overview of current constraint technology, and
contains some discussion of the technological alternatives.
While implementations of pure constraint programming languages exist, many
successful constraint solvers are distributed as modules or packages for one or
more of the most commonly used programming languages.
Konrad (2004), for instance, used the built-in finite-domain integer package of
the functional programming language Oz 1 for building his KIMBA model gen-
erator. KIMBA is a very adaptable framework for model generation in the
spirit of lean automated reasoning, which means that it is tailored towards
simplicity and adaptability for research instead towards industry-strength per-
formance. Unfortunately, the system has ceased to be available, the author has
lost access to the source code (personal communication) and states that it only
runs on extremely outdated versions of Oz that are difficult to come by and get
to run on current systems.
Turning to state-of-the-art constraint technology instead, we see the market
split between high-performance industry-oriented commercial systems and more
research-oriented free software libraries. Examples of the latter include the very

1http://mozart-oz.org/
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popular C++-based constraint libary Gecode 2 as well as the Java library
JaCoP 3, which I have been using for my experiments.
Major players in the commercial market include IBM with their very successful
ILOG CPLEX Optimizer 4, and Gurobi with the Gurobi Optimizer5, which
is particularly good at exploiting multi-core processors. An emerging player
is the NICTA Constraint Programming Platform project 6 with their system
G12, which strives to combine existing tools with approaches from automated
reasoning to yield efficient solution methods for many hybrid problems.
The tendency for each system to define its own constraint language led to a
lack of interoperability between different constraint systems, making comparison
and integration of different solvers costly and difficult. To achieve some level
of standardization, de la Banda et al. (2006) introduced Zinc as a powerful
modelling language that subsumes most of the other constraint languages in
expressivity, paving the way for a more unified syntax and influencing many
systems in their input languages. However, Zinc turned out to be too expressive
to be widely adapted and implemented.
This led Nethercote et al. (2007) to the definition of MiniZinc as a subset
of Zinc that can be compiled into the low-level constraint language FlatZinc.
MiniZinc has enjoyed growing popularity in recent years, and many systems
today offer FlatZinc as an alternative input language in addition to their native
constraint languages. As these include popular non-commercial systems such
as Gecode and JaCoP, MiniZinc is well on the way to becoming the first lingua
franca of constraint programming.

4.3 Advantages of the Constraint Paradigm

The main asset of constraint programming is that it is a declarative paradigm,
which means that from the user perspective, the focus is on formalizing prob-
lems, without a need to put much effort into algorithms for their solution. This
also implies that only the problem statement needs to be changed when cir-
cumstances change or different variants need to be tried out. Constraint solvers
are therefore ideal for rapid prototyping and the ad-hoc solution of practical
combinatorical problems as they occur in logistics and other planning tasks.
The promise of using constraint solvers for model generation is that constraint
solvers are readily available, highly optimized and mature systems that are
usually a lot more performant than what one could hope to achieve with a home-
made program for any given combinatorical problem. This especially includes
ad-hoc implementations of tableaux calculi, where the effort that has to be put
into optimization in order to end up with a workable system heavily detracts
from the time that could go into a better understanding of the problem domain
and into the development of applications.

2http://www.gecode.org/
3http://jacop.osolpro.com/
4http://www.ibm.com/software/integration/optimization/cplex-optimizer/
5http://www.gurobi.com/
6http://www.nicta.com.au/research/projects/constraint programming platform/
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4.4 Specialization vs. Generality

While constraint solvers are extremely useful as rather general tools that are
still reasonably fast at solving combinatorical problems, their generality comes
with abstraction costs, just as in many other areas of computer science such
as database and virtualization technology.
As a paradigm, constraint programming is a little too general to be implemented
with near-optimal efficiency for all problem instances by a single solver. The
non-commercial libraries suffer from the unavoidable problem that the more
freely one can express problems, the higher the burden of implementing the
constraint language becomes, and the more inefficient the implementations will
get due to limited development time.
On the other hand, commercial systems are tailored towards easy deployment
by non-specialist users in a commercial environment. Together with the strict
closed-source policy, this turns commercial constraint solvers into black boxes,
making it hard to integrate additional information that cannot be expressed in
the modelling language, but could guide the search for solutions.
As we have seen, the translation of the model generation problem into a con-
straint problem is only possible for a fixed domain size. This makes it necessary
to estimate the domain size beforehand, which will not be very precise for
larger theories. Therefore, the advantage in performance offered by an industry-
strength constraint solver could easily be wasted by many iterations over dif-
ferent domain sizes. This issue also reflects the fact that model generation is
not a purely combinatorical problem, which makes it quite a bit more complex
than what one would normally try to tackle using constraint technology. A
little caution is therefore advised with the assumption that the matureness of
constraint solving technology clearly makes constraint-based model generation
the most promising method.

5 The Combinatorical Challenge

Even though first-order satisfiability is undecidable in general, this does not
need to concern us if we are only interested in finite models. We have seen that
it is possible to implement model generation using a tableaux calculus that is
complete for finite satisfiability.
Although many models of infinite size are finitely representable and can there-
fore still be handled by computers, restricting ourselves to finite models arguably
suffices for most linguistic applications. Even though even a simple world knowl-
edge database that contains an axiom such as every person has a father already
causes every sentence that mentions a person to only have infinite models, from
a cognitive perspective it makes sense to assume that the mental representation
of a sentence is never an infinite structure.
The real problem of model generation for NLP is therefore not its undecidability,
but its intractability for many decidable cases, especially for larger problems.
Theorem proving algorithms are notorious for scaling rather badly, but in model
generation the challenge is even higher. In this chapter, we will get an impression
of how severe the problems are, and we will learn about some basic techniques
that promise to help in partially circumventing them.

Johannes Dellert Challenges of Model Generation for NLP



5.1 The Scale of the Problem Page: 10

∃x1∃x2∃x3∃x4(org1singapore(x1) ∧ r1nn(x1, x2) ∧ n1scientist(x2) ∧
v1reveal(x3) ∧ r1agent(x3, x2) ∧ r1theme(x3, x4) ∧ n1proposition(x4) ∧
∃x5∃x6∃x7∃x8(n1sar(x6) ∧ r1nn(x6, x5) ∧ n1virus(x5) ∧ a1genetic(x7) ∧
n1change(x7) ∧ v1undergo(x8) ∧ r1agent(x8, x5) ∧ r1patient(x8, x7) ∧
n1event(x8)) ∧ n1event(x3))
∀x1(n1abstract entity(x1)→ n1entity(x1))
∀x2(n1change(x2)→ n1event(x2))
∀x3(n1event(x3)→ n1abstract entity(x3))
∀x4(n1proposition(x4)→ n1abstract entity(x4))
∀x5(v1reveal(x5)→ n1event(x5))
∀x6(n1scientist(x6)→ n2being(x6))
∀x7(n2being(x7)→ n1object(x7))
∀x8(n1object(x8)→ n1entity(x8))
∀x9(org1singapore(x9)→ n1object(x9))
∀x10(v1undergo(x10)→ n1event(x10))
∀x11(n1virus(x11)→ n2being(x11))
∀x12(n1abstract entity(x12)→ ¬n1object(x12))
∀x13(n1sar(x13)→ ¬n1entity(x13))
∀x14(n1change(x14)→ ¬v1reveal(x14))
∀x15(n1event(x15)→ ¬n1proposition(x15))
∀x16(org1singapore(x16)→ ¬n2being(x16))
∀x17(v1undergo(x17)→ ¬n1change(x17))
∀x18(v1undergo(x18)→ ¬v1reveal(x18))
∀x19(n1virus(x19)→ ¬n1scientist(x19))

Figure 1: Typical first-order theory as produced by Nutcracker

5.1 The Scale of the Problem

In order to understand why combinatorical explosion constitutes such an enor-
mous obstacle to model generation for larger theories, it is worthwile to consider
some figures as they arise in a typical example. Take the theory in Figure 1,
which the Nutcracker RTE system by Bos & Markert (2005) produces to rep-
resent the meaning of the newspaper headline Singapore scientists reveal that
SARS virus has undergone genetic changes, and which I will use as a typical
example of a theory as they arise in computational semantics.
This theory contains thirteen unary and four binary predicate symbols. If we
simply compute the number of combinatorically possible structures over these
symbols for a given domain size n, we arrive at a structure space size of 213n+4n2

,
which for the plausible domain size of n = 8 already evaluates to 2360 structures.
An efficient model building algorithm will of course not even come close to
generating all of these structures before finding a model. However, in the case
where we try to generate models of an unsatisfiable theory, quite a few of these
alternatives will indeed have to be tried out.
For a given finite domain size, the satisfiability problem for first order logic
can be flattened to a propositional satisfiability problem by replacing universal
(and existential) quantifiers with finite conjunctions (and disjunctions) over the
whole domain. An algorithm that even in the worst case only needs to test a
non-exponential fragment of the search space would therefore have to solve the
SAT problem in polynomial time, which would make it a proof of P = NP and
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therefore unlikely to be found or even exist.
Given these theoretical limits, we must expect the size of the search space to
become completely intractable already at rather low values of n, which means
we cannot hope to ever develop a model generator that can reliably generate
larger models for arbitrary first-order theories.

5.2 Model Building vs. Model Finding

A first step towards dealing with these limitations is to analyze the nature
of the theories arising from the semantic analysis of larger discourses. The
basic intuition is that depending on the task we wish to accomplish the model
generation problem will surface as one of two typical variants.
In the first variant, the structure space contains many models of the theory.
In the tableau case, this means we have many saturated branches, and in the
constraint case it means that the constraints are not very restrictive. This means
that model generation can proceed very constructively. I therefore propose to
use the term model building only for model generation in such a situation,
and will do so during the rest of the paper.
In the second situation we deal with a restrictive theory that does not possess
many models. Almost all branches of a tableau will eventually be closed, and
the equivalent constraint problem will be a lot harder to solve. In this situation,
model generation will largely become the task of finding one of the few points in
structure space that constitute a model, and I will therefore call it the problem
of model finding.
Although formally, there is no difference between model building and model
finding, the optimizations that are most promising in the two situations are
obviously of a very different nature. There is of course a continuum of mildly
restrictive theories between the two extremes, but the formal representations
that we want to build models for in computational semantics do indeed mostly
come in one of the two variants. This may be because the thoughts humans
utter under normal circumstances are not obviously inconsistent or hard to
accomodate. On the other hand, very restrictive theories need to be processed
when we need countermodels as e.g. in entailment checking.
The goal of optimization in model building is to speed up the traversal of the
structure space, building large parts of the structures as soon as possible and not
delaying too many decisions. This is a useful strategy because the probability
of ending up in a closed tableau branch will be quite low. Heuristics that are
optimized for model building will therefore tend to traverse the structure space
mainly in a depth-first fashion.
On the other hand, efficient model finding will tend to employ more of a breadth-
first strategy. Model finding is of course inherently more difficult than model
building, which means that a model finder will always have to test many different
variants and backtrack a lot.
The usefulness of distinguishing these two variants of the model generation
problem is that we can develop tools for the two cases separately. Although the
combinatorical challenge is present in both situations, we already know that it
is a lot less pronounced in model building than in model finding. By focusing on
the instances where model building is sufficient, we have a much better chance
of arriving at technology that can process the semantics of entire discourses.
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5.3 Why Tableaux Are Slower

A common impression among users of automated reasoning technology is that
tableau implementations are generally rather slow. This impression is certainly
justified if one compares the performance of mostly academic tableau-based
reasoning tools with the excellent performance of commercial constraint solvers.
The reason behind this problem is not that tableau methods would be inferior
in principle, but that a lot of specialized knowledge and excellent programming
skills are necessary to implement good systems. The lack of readily available
and versatile tableau technology has led many researchers in the field to develop
their own ad-hoc implementations, often quite reasonably not with the intention
of arriving at competitive systems, but as mere proofs of new concepts.
Of course, even the most sophisticated constraint solving techniques cannot do
away with a problem’s inherent combinatorical complexity. This gives us a
reason to assume that tableau systems could achieve success similar to that of
constraint systems if the industry would put a comparable amount of ingenuity
into their implementation and optimization.
For our purposes, the main problem of the existing techniques for tableau opti-
mization is that they mostly rely on clause normal forms. But these require the
use of implicit quantification and therefore of skolem functions, which makes
them problematic for model generation.
On the way towards feasible tableau-based model generation systems, we there-
fore have to look into possible improvements of analytical tableaux, where the
research efforts are a lot more scarce than for optimizations of free-variable
tableaux for theorem proving. However, there exist some interesting ideas that
seem to indicate that the possibilities of analytical tableau optimization are far
from exhausted.
Baumgartner & Kühn (2000) developed a regularity condition that can be
used to prevent logically redundant expansions on hyper tableaux, an idea that
can easily be adapted to the more general analytical tableaux case. Another
interesting optimization technique is the subproof strategy advocated by
Kohlhase & Koller (2001), which can be used to find shortcuts that lead to
the immediate generation of additional structure in the current model.
None of these techniques is commonly implemented in off-the-shelf tableau sys-
tems, and it is unlikely that the stance of tableau technology in the industry will
improve, mostly because of the higher accessibility of the constraint paradigm
to non-expert users. Under these circumstances, constraint technology has good
chances to remain the primary paradigm for solving combinatorical problems.

5.4 Issues with Constraints

The generality of constraint solvers means that out of the box they cannot be
extremely efficient in solving every problem that the user can express using the
respective input language. Optimization can be seen as the implementation
of some procedural knowledge that cannot be expressed in the declarative
input language, which means that it requires some control of the heuristics.
Given the combinatorical complexity of the model generation problem, we can
be sure that no constraint solver will achieve acceptable performance without
some modifications to the default heuristics.
Apart from the expert knowledge that is necessary to understand the heuristics
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of a modern constraint solver, enforcing a specific desired behavior is often made
difficult because it would interact badly with some low-level implementation
detail. We therefore cannot expect to get as much control of the procedural
side as would be possible e.g. in logic programming.
The problem is aggravated by the fact that different constraint solvers support
different ways of influencing their heuristics. Unlike MiniZinc for problem state-
ments, there is no standardized and implementation-independent way to define
specialized heuristics. The need for optimization therefore destroys interoper-
ability as one of the major advantages of current constraint technology. To
arrive at an efficient system, one needs to buy into one constraint solver, which
can considerably confine the room for experimentation.

6 Special Heuristics for NLP

This chapter focuses on some ideas how more adequate model generation for
computational semantics can be achieved. Since all of these ideas boil down
to defining specialized heuristics, the design and implementation of specialized
heuristics for the purpose will be the main focus of investigation.
After a few short observations about the structure of typical search spaces in
NLP, we will first have a closer look at ways to formalize and implement heuris-
tics in analytical tableaux. The discussion will mainly rely on the notion of a
tableaux machine as presented in Kohlhase & Koller (2000), which permits
to describe and compare many useful heuristics. I will then offer a view of my
OletinMB system as a version of a tableaux machine, and build up on this idea
to elaborate a little more on Prioritized Identity Assumptions (PRIDAS
functions) as introduced in Dellert (2010). Both approaches will be motivated
by possible application areas in computational semantics.
I will then provide an overview of the essential constraint solving heuristics as
they are applied in automated reasoning, and also give an impression of the ways
in which heuristics can usually be influenced, with JaCoP as the primary exam-
ple. The chapter concludes with a summary of promising specialized heuristics
and an assessment how well these ideas could be implemented with the existing
tableau and constraint technology.

6.1 A Closer Look at Search Spaces

If we inspect the search space of an analytical tableau calculus on a typical
input theory such as the one from Figure 1, some interesting patterns emerge.
Especially interesting is the way in which the information contained in world
knowledge axioms of the form ∀x(φ(x)→ ψ(x)) gets integrated into the partial
models. In the calculus as defined in Chapter 3, such an axiom is expanded
to φ(ci) → ψ(ci) for all skolem constants ci representing the model’s domain.
Each of these implications leads to a split of each tableaux branch, leading to
a structure that fans out considerably. One such axiom over a domain of size n
is factored out to 2n distinct branches, many of which do not differ very much
in relevant information. The need to treat all these branches independently is
one of the major reasons for combinatorical explosion.
This effect can be somewhat mitigated by a forward chaining rule that applies
universal quantification only if the antecedent is already on the branch. Using
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this rule one can avoid some of the branching, though at the cost of missing
some negative literals that would have been inferred in a true case distinction,
potentially leading to delayed closure of some branches. Experiments show that
the negative consequences of the forward chaining rule mostly concern model
finding, and that it tends to speed up model building tremendously.
Another problematic pattern results from the so-called universe explosion
problem. A naive analytical tableau has considerable difficulty in handling
formulae with the ∀∃-prefix. The problem is that for each entity in the domain,
the existential quantifier warrants the introduction of a new entity, to which
the formula immediately needs to be applied again, a process which leads to
an infinite branch. One of the reasons for the popularity of minimal model
generation is that it systematically the problem by avoiding to run into such
branches, prioritizing other instantiation choices.

6.2 Tableaux Machines

Kohlhase & Koller (2000) informally introduce a tableaux machine as an au-
tomaton whose states are tableaux, and whose accessibility relation is defined
by the possible expansions according to some tableau calculus. With closed
tableaux as final states, a run of the automaton will correspond to a refuta-
tional proof. If every tableau with a saturated branch is a final state, the
automaton turns into a model generation machine. The branch and the for-
mula that are selected for expansion at each step can be determined via any
computable function.
This basic model of a tableaux machine can then be enhanced by special oper-
ations. One idea is to support the introduction of new formulae at any state
of the machine, which are then added to all branches of the current tableau.
Backtracking is seen as an error recovery operation that allows the machine
to revert to some earlier state and then move into another branch. In addition,
the formalism allows to define theorem-proving sub-tableaux which need
to be closed before the machine can move to another state of the main tableau.
This is useful for checking whether some formula is entailed by a branch.
A tableaux machine can be used as a framework for describing a variety of
advanced heuristics. For instance, Kohlhase & Koller (2001) suggest a bounded
optimization technique for determining the expansion strategy. Using costs
for rule applications and a function measuring the gain in model quality, the
strategy would consist in expanding at low cost and high gain until the costs of
further expansion are higher than the expected gain.
The original context for the notion of a tableaux machine was the develop-
ment of Resource-Adaptive Model Generation (RAMG), a calculus that
was introduced by Kohlhase & Koller (2001) as a performance model for nat-
ural language understanding. The main idea of RAMG is the guidance of a
resource-limited tableau expansion strategy by keeping track of saliences for
constant symbols. Salience is first approximated using syntactic criteria (e.g.
with subjects being more salient than objects) and decays as new sentences are
added to the discourse. The re-use of a constant increases its salience. If we
now have salience influence expansion rule costs by e.g. making the use of a
non-salient entity in a δ-rule very costly, we thereby model the preference for
salient entities during anaphora resolution. Kohlhase & Koller (2001) explain
by examples how RAMG with saliences could also be used to capture other lin-
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guistic phenomena such as accomodation, bridging inferences and the behavior
of definite reference.
As Kohlhase & Koller (2001) themselves remark, the claims of their paper are
largely based on introspection rather than on evidence. The examples are only
shown to work for ad-hoc rule costs, salience assignments and world knowledge
axioms. From the perspective of computational semantics, it is a highly relevant
question where such numbers and axioms would come from if one were to go
beyond the study of a few well-chosen examples and to apply it to a wider range
of linguistic data.
Burchardt & Walter (2001) describe a first implementation of RAMG, the
BuGS system, which they intend as an experimental environment for answer-
ing such questions. They manage to ensure a consistent choice of rule costs
and saliences by employing a tableau-congruent salience structure as a techni-
cal device for handling salience functions. To demonstrate that it is possible
to drastically cut the search spaces while still emulating human performance in
model generation, the BuGS system forfeits backtracking and always commits
to one branch that is locally optimal. This makes BuGS an extreme case of a
model builder, one that runs a high risk of not arriving at a finite model al-
though it might exist. To make the consequences of a single wrong expansion
decision less drastic than not to arrive at any model at all, shifting is intro-
duced as a local repair mechanism that permits the revision of a few very recent
expansion decisions.
The main strength of a tableaux machine is that branch and rule selection
strategies can be defined in a very modular manner. The variant implemented
in BuGS relies on a freely definable heuristic function that is used to estimate
the expected gain of expansion alternatives at each decision point. Burchardt &
Walter (2001) suggest the average salience of the partial model resulting from
each expansion step as a first plausible quality measure. Further ideas aim
at discouraging model growth in the spirit of domain-minimal model genera-
tion, preference of chaining over full evaluation of universal quantification, and
equivalence classes of constant symbols that are resolved later.
The flexibility mirrored in these ideas makes BuGS a very valuable platform
for experimentation, and the authors propose to use this capability for showing
that there is a single choice of strategy and parameters that causes BuGS to
handle most of the examples from Kohlhase & Koller (2001) in the desired way.
This step seems to never have been taken, and the question how parameters
and strategies for wider coverage could be found remains open. Unfortunately,
the BuGS system is not available for further experiments, and not even the
distribution webpage 7 seems to ever have been launched.

6.3 OletinMB and PRIDAS functions

While minimal model building has its merits because in principle it allows us to
avoid assuming too much structure, the resulting models will have a bias towards
smaller domains that does not necessarily correspond to human reasoning. For
example, the minimal model of ∃x∃y(man(x)∧car(y)∧drive(x, y)) is a universe
with a single entity that is both a man and a car, and which drives itself.

7http://www.coli.uni-saarland.de/~stwa/bugs/
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Much of this problem can be attributed to missing world knowledge that pre-
cludes unwanted identity assumptions and can be brought into the picture
by introducing a usually rather large number of additional axioms into the the-
ory. This works quite well for small theories, but the huge blow-up in theory
size makes models generation for larger discourses even less tractable.
To mention another problem, it is not clear what kind of world knowledge could
prevent a minimal model generator from interpreting the sentence “I see a man”
with the formal representation ∃x(man(x)∧see(i, x)) as being uttered by a man
who sees himself. The information that a model generator would need to avoid
this is that under normal circumstances, two-place predicates that represent
the meanings of transitive verbs should preferably not be instantiated with two
identical arguments.
The main idea implemented in the heuristics of OletinMB to address both prob-
lems is to use prioritized identity assumptions (PRIDAS) during the
model generation process, and to control these via a preference function
that can make use of external knowledge. In terms of a tableaux machine, a
PRIDAS function is a mechanism to dynamically adapt the costs of different
possible applications of the δ-rule.
By default, the input to a PRIDAS function are atomic formulae that directly
result from different instantiation decisions. A PRIDAS function then uses
this information to rank possible instantiations according to linguistic criteria.
Such a function could e.g. rely on an ontology to preclude identity assump-
tion between entities of incompatible types (such as men and cars), or dismiss
instantiations that give a reflexive interpretation to transitive verbs.
The OletinMB system offers a flexible interface for user-definable PRIDAS func-
tions, and is currently being extended to handle other types of global heuristics.
Futhermore, in order to compensate for the lack of any available platform for
experimentation with analytical tableaux, OletinMB will be extended into a
full implementation of a tableaux machine, with great advantages for further
research in specialized heuristics.

6.4 Heuristics in Constraint Programming

Constraint solver implementations usually rely on a two-part decision procedure
operating on sets of constraints and a given set of variables. The propagation
part is a process that uses the knowledge currently contained in the constraints
to (further) restrict the values of the variables. These restrictions are then used
in order to infer new constraints or to simplify old ones. The distribution
part is responsible for provisionally restricting a variable more strongly than
warranted by propagation alone in order to enable further propagation. Distri-
bution is a non-deterministic process and the part that makes it necessary to
use a backtracking mechanism.
An important principle of efficient constraint solving is to delay distribution
as much as possible in order to avoid backtracking, leading to more educated
guesses for the provisional restrictions that promise to be of value. Another
important technique is to prioritize distribution over variables that occur in
many constraints in order to maximize the effect of propagation.
Good constraint solvers offer interfaces for customizing distribution, which are
however often not very powerful. As a practical example, we take JaCoP as
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a non-commercial and therefore very open system. JaCoP is a rather well-
documented and extensive library, and it offers a versatile interface as well as a
variety of configuration options for influencing search. As global search modes,
JaCoP offers depth-first search, restart search and credit search, as well as
combinations of these. Most of the flexibility lies in the possibility to implement
custom search plugins that can listen to search events such as encountered
solutions, performed consistency checks and backtracking. The plugins can then
influence the next distribution step by controlling variable selection and value
assignments in various ways.
To adapt heuristics beyond these rather local decisions, it would be necessary
to completely understand and make changes to the core implementation. Given
that the source code for JaCoP is available, this is not impossible, but it would
require one to become an expert in the internals of the system. Such an endeavor
would inevitably lead to a fork of JaCoP development, precluding the possibility
of profiting from improvements in future versions of the main branch.

6.5 Implementing Specialized Heuristics

The parallels between efficient constraint solving heuristics and efficient tableau
methods are manifold. In fact, propositional satisfiability is an instance of finite-
domain constraint solving where the variables only range over two values. The
kind of changes one has to implement when adopting specialized heuristics are
therefore similar in both frameworks. The real difference lies in the degree to
which they can be easily implemented.
Many of the ideas for improved heuristics we explored rely on the more fine-
grained control offered by tableau systems. Distinguishing different rule types
makes it easier to assign costs to inference steps in the spirit of RAMG, and
open branches that can be interpreted as partial models make it far easier to
identify decision points where it pays off to introduce additional knowledge in
the style of PRIDAS functions.
In the constraint programming paradigm, it is easier to think in terms of the
desired results. The preferred way of modifying the behavior of a constraint
solver is to use further constraints for axiomatizing the desired type of models.
However, it is often unclear whether and how specific requirements can be trans-
lated into the constraint language, which means that we will have to exploit the
limited possibilities for influencing the procedural aspect as well, with all the
problems mentioned in the last section.
We have seen that the tableaux model has led to some interesting ideas about
linguistically motivated model generation heuristics, and it seems that the con-
straint approach causes too many obstacles to their direct implementation to
be attractive for experimental systems. Altogether, it therefore seems more
promising to stick to tableau methods for experiments in specialized heuristics.

7 Combining Tableaux and Constraints

In the last two chapters, we have seen that both tableau and constraint methods
have some potential for model generation in NLP. The most promising way to
advance the state of the art therefore seems to be the development of combined
strategies that make good use of the strengths of both paradigms.
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7.1 Previous Approaches

There exist previous approaches to combining the two technologies, mainly by
enriching tableaux with a constraint system. This strand of research is pre-
sented extensively in Caferra et al. (2004), and I will only summarize the main
developments here.
The starting point is the idea to speed up model generation by keeping track
of conditions that allow or prevent the application of rules in clausal calculi,
as e.g. unwanted variable assignments or term equations. Such conditions can
be encoded by constraints over the domains of variables occuring in formulae.
Apart from restricting partial models, they can also be used to characterize
instances that cannot be inferred from the theory. Exploiting such information
in the model generation process is also called disinference.
Application of these ideas to the tableau calculus led to the method that Caferra
et al. (2004) call Refutation and Model Construction with Extended
Tableaux (RAMCET), where tableaux are extended with equational con-
straints to substitute for problematic unification. These constraints constitute
a compact representation of many models that would otherwise have been con-
structed redundantly, but handling and propagating the constraints leads to
some overhead in implementations.
The basic RAMCET method is then extended in various ways, mostly with the
goal of generating a large class of infinite, but finitely representable models. For
this, a lot of technical machinery is needed, as e.g. term schematizations
via integer exponents or tree automata. This kind of research is highly relevant
for getting around the universe explosion problem, since e.g. the infinite line of
ancestors resulting from the axiom “every person has a mother” can easily be
dealt with. However, the resulting models are only represented very implicitly,
making it impossible to access them using standard model checking technology.
Moreover, the other mentioned challenges of model generation for NLP are
arguably more pressing at the moment, and the RAMCET method is not of
much use in addressing these issues, especially since the overhead of implicit
model representation introduces unnecessary complexity into the finite case.

7.2 Combinatorial Subproblems

A popular technique of algorithmics is to reduce a problem to one or more in-
stances of a simpler problem, or at least a problem whose internal structure is
well-known and for which good solution methods exist. Propositional satisfiabil-
ity (SAT) is such a well-understood problem, therefore many popular tableaux
calculi rely on resolving quantification as early as possible. The normal form
conversions used by many calculi can be conceived as doing this already in a
preprocessing step.
While we cannot exclusively operate on clausal forms in the case of model gener-
ation, it is still worthwile to prioritize decisions that aim towards propositional
subproblems of a very combinatorial nature. In essence, this means to decide
on the domain size as early as possible, and this means we want to prioritize
the resolution of existential quantification.
If we look at this goal from the perspective of a non-clausal tableaux calculus, an
ideal format for an input formula would be one where existential quantification
occurs as flatly embedded as possible. This is exactly the defining property of
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a formula in prenex normal form (PNF), which takes the form of a string
of quantifiers that scope over a quantifier-free formula. Any first-order theory
can be cast into PNF, which means we could simply use any full tableaux
implementation if we convert input theories into PNF.
These considerations show that identity assumptions constitute the real decision
points during the model generation process. Once these decisions have been
made, what remains is a SAT problem determined by the respective instantiation
choices. The complexity of the problem is of course still there, now mirrored
in the fact that the SAT problems resulting from our choices will often be
unsolvable, potentially requiring us to backtrack a lot.
To reduce the amount of bracktracking, it is vital to make informed instantiation
decisions early on, which is one of the areas where PRIDAS functions have some
potential. But this leads us into a tradeoff with the amount of information
we already have during model generation. In the extreme case of PNF, the
instantiation decisions already take place at a stage where the partial models
contained in the open branches do not yet contain any atoms that could help
in the instantiation decisions made by a PRIDAS function.
It becomes necessary to implement some kind of look-ahead capability that
gives us as much information as possible about the future consequences of differ-
ent instantiation decisions. Fortunately, in many cases it is possible to extract
from a propositional formula atoms that will necessarily have to be true if the
formula is to hold. This can e.g. by done via a polarity automaton that
recursively descends into the formula while keeping track of negative scopes and
exploits chaining inferences to deal with implication. The atoms thus extracted
do not amount to a full solution of the SAT problem, but they offer useful input
to a PRIDAS function which could then make informed instantiation decisions
early on in the process.

7.3 Constraint Solving To Speed Up Analytical Tableaux

We have seen that tableaux are superior to constraint solvers in their openness
to specialized heuristics. On the other hand, constraint solvers excel at solving
combinatorical problems, and tableaux do not perform too well on them because
of more expansive data structures in experimental implementations.
In the last section, we have taken steps towards a method of splitting the model
generation task into one purely heuristic and many purely combinatorical prob-
lems. Given the strengths of tableau and constraint technology, this directly
suggests a new way of combining the two approaches:
If we keep all the adaptability of heuristics in the tableau system of OletinMB,
and resort to constraint solving technology for efficient solution of the resulting
combinatorical subproblems, this might well lead us to a novel highly efficient
model generation system that retains a lot of flexibility.

8 Conclusion

In this paper, we have encountered and assessed the main challenges in model
generation for NLP, exploring how some of these problems might be approached
by future model generation technology. We have seen that analytical tableaux
are attractive because of their openness to linguistically motivated heuristics,
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and that current constraint solving technology is superior in solving combina-
torial subproblems. I have described the general idea behind a system that
combines both approaches in a novel way, and mentioned some of the potential
problems that would have to be solved by an implementation.
Much of the presented considerations remain to be carried out and assessed
in practice. This will mainly be done within the framework of OletinMB, as
it seems to be the only tableau system currently available that provides the
required flexibility in influencing the heuristics. The next steps will be to ex-
periment with linguistically motivated PRIDAS functions, and to experiment
with an integration of JaCoP for the solution of the propositional problems that
result from the instantiation choices.
In the long run, I hope to extend OletinMB into a full tableaux machine also for
other logics. Most of the optimizations mentioned throughout this paper will
furthermore have to be implemented sooner or later while I strive for a model
generation system that is powerful enough to tackle logical representations as
they arise from longer discourses.
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