
lc-parse-gui - A Left-Corner
Parser with Graphical Debugger

Seminar für Sprachwissenschaft
Eberhard Karls Universität Tübingen

Author:
Johannes Dellert

johannes.dellert@gmx.de

Course:
Logic Programming

Supervisor:
Dr. Frank Richter

Hiermit versichere ich, dass ich die vorgelegte
Arbeit selbstständig und nur mit den angegebe-
nen Quellen und Hilfsmitteln (einschließlich des
WWW und anderer elektronischer Quellen) ange-
fertigt habe. Alle Stellen der Arbeit, die ich an-
deren Werken dem Wortlaut oder dem Sinne nach
entnommen habe, sind kenntlich gemacht.

(Johannes Dellert)

Contents

1 Introduction 1

2 Installation and Basic Usage 2
2.1 Requirements . 2
2.2 Installation and Usage . 2

3 Grammar Format 3
3.1 File Format . 3
3.2 Limitations . 3

4 Graphical Debugger 4
4.1 Controlling the Parsing Process 4
4.2 Interpreting the Decision Tree . 6
4.3 Exploring the Parsing History . 7

5 Technical Details 8
5.1 Parser Architecture . 8
5.2 Java-Prolog communication . 9
5.3 Graphical Debugger . 11

6 Known issues 12

Page: 1

1 Introduction

This paper documents lc-parse-gui, an experimental parsing environment
that combines a left-corner parser in plain Prolog with a graphical debugger
written in Java.

The graphical debugger allows the user to manually guide the parsing process by
confirming or rejecting hypotheses, and it provides the user with the possibility
to inspect in detail the state of the parser at each step of the parsing history.

Left-corner parsing was developed as one of the standard approaches to parsing
context-free grammars (see Irons (1961) for the seminal paper, and Rosenkrantz
& Lewis (1970) for a more explicit discussion). It can be seen as a combination
of top-down and bottom-up parsing in that it is input-driven, but relies on top-
down predictions to maintain a hypothesis about the parse tree.

In principle, the parser scans a word from the input, makes predictions about
which structure the scanned word could be part of, and tries to complete the
predicted structure. This procedure is repeated recursively for non-leaves by
means of a prediction stack in which incomplete predictions are stored.

Left-corner parsers have become increasingly popular in psycholinguistics be-
cause there are strong indications (see e.g. Resnik (1992)) that of all the clas-
sical parsing approaches, left-corner parsing resembles most the way humans
process language. This is plausible because of the linearity with which a left-
corner parser infers as much as it can about the parse tree without knowing all
the input.

The benefits of a parser with a graphical debugger like the present one are
twofold: On the one hand, it can be very useful for researchers in psycholinguis-
tics to be able to manually guide parsing processes towards realistic processing
in order to recognize which decision patterns will have to be contained in their
models of sentence processing. On the other hand, it can be a valuable tool for
teaching the basics of left-corner parsing to students, since it is always easier to
understand new algorithms with the support of an intuitive visualisation.

The basic structure of the Prolog part of the software relies on the left-corner
parser implementation presented in Covington (1994) in section 6.4.1. This
backbone had to be severely extended to provide support for explicit prediction
stack maintenance, construction of the decision tree, and message exchange with
the GUI.

The communication between Prolog backend and Java frontend relies on the
Jasper library whose functionality is best explained in the SICStus documenta-
tion (SICStus (2007), chapter 43).

Johannes Dellert 1 lc-parse-gui

Page: 2

2 Installation and Basic Usage

2.1 Requirements

Basic system requirements:

• SICStus Prolog 3.12.8 or higher, not tested with SICStus 4

• Sun Java Version 1.6.0.12 or higher

2.2 Installation and Usage

To be able to display the user interface of lc-parse-gui, SICStus must be in-
stalled with Jasper support. If you installed SICStus on your system without
activating Jasper support, the easiest way under Linux is to reinstall SICS-
tus by means of the install script InstallSICStus that comes with it. When
prompted, state that you want to install Jasper, and specify the location of your
Java installation. Normally, this would be the directory in which the bin folder
with the java executable resides (check with which java if unsure).

If you have multiple version of Java installed, make sure you point Jasper to
the correct one. Especially note that the gcj Java variant contained in some
Linux distributions is not compatible with Jasper. If you must use an older
version of Sun Java 6, you might be successful by recompiling the Java files con-
tained in the src folder, and moving the resulting Java classes to the bin folder.

Once SICStus and Java are correctly set up, installing lc-parse-gui merely
amounts to unpacking the contents of the lc-parse-gui archive into a directory
of your choice.

To use the software, change into the installation directory and fire up sicstus
from there. At the prolog prompt, simply load the parsing system by telling
Prolog to consult lc-parse-gui.pl:

?- [’lc-parse-gui.pl’].

The next step is to load a grammar. This is also achieved simply by consulting
the Prolog file containing the grammar. In the case of the English test grammar
that comes with lc-parse-gui, this amounts to typing

?- [’test-grammar-en.pl’].

The system is now ready to parse sentences by means of the parse/2 predicate.
With the test grammar, we could tell lc-parse-gui to try to analyze “the dog
chases the cat” as something of category s, or to parse “amuses the cats near
the elephant” as a vp:

?- parse(s,[the,dog,chases,the,cat]).
?- parse(vp,[amuses,the,cats,near,the,elephant]).

A graphical user interface will appear, allowing the user to steer and inspect the
parsing process. The usage of the interface is described in detail in Chapter 4.

Johannes Dellert 2 lc-parse-gui

Page: 3

3 Grammar Format

lc-parse-gui operates on standard CFGs in a Prolog format.

3.1 File Format

The input format for the parser are Prolog files that contain clauses of the pred-
icates rule/2 and word/2. The first argument of both predicates contain the
category whose internal structure the clauses define, or the left-hand sides of
production rules. For clauses of rule/2, the right-hand side must be a list of
categories representing the right-hand side of the production rule. In the case
of word/2, the second argument is a prolog atom representing a word in the
described language.

Consider e.g. the following clauses from the English sample grammar:

rule(np,[d,n]).

word(d,the).
word(n,dog).
word(n,dogs).

This fragment defines that “the” can be parsed as a d, while “dog” and “dogs”
are of category n. The rule states that an np can be realized as a d followed by
an n. Taken together, the fragment licenses two phrases of type np: “the dog”
and “the dogs”.

Note that it is not a problem to assign two different categories to one word
by using two word/2 clauses with an identical second argument. The parser will
backtrack to take both possibilities of category assignment into consideration.

3.2 Limitations

The parser currently cannot handle null constituents, i.e. setting the second
argument of some rule/2 clause to the empty list will lead to unpredictable
behaviour. In such a case, the parser will either crash or descend into infinite
recursion.

To understand why this happens, consider the following rules:

rule(s,[np,vp]).
rule(np,[d,n]).
rule(d,[]).

Note that these rules are supposed to license an empty determiner at the start
of an np and an s. The problem is that when the parser is looking for a vp,
but the vp is not there, it will predict an np headed by an empty determiner
instead. After not finding an n to complete this, it will predict another np with
an empty determiner, and so on ad infinitum.

It is possible to overcome such problems by precompiling the possible beginnings
of constituents when loading the grammar and to only allow the prediction of

Johannes Dellert 3 lc-parse-gui

Page: 4

an empty constituent if the symbol that is being completed at the moment can
begin with that constituent. Such a pre-compilation step is planned for future
versions of the parser. The main reason why this feature was not integrated into
this prototype is that the parsing process would have been harder to visualize.

In many cases, empty constituents are not necessary to ensure the productivity
of the grammar, even though the analyses obtained without empty constituents
might violate principles of linguistic theory. In the example case, the same
strings would be described by the grammar if we simply changed the rules into

rule(s,[np,vp]).
rule(np,[d,n]).
rule(np,[n]).

4 Graphical Debugger

The graphical debugger provides the user with the possibility to influence the
alternatives considered by the parser. What is technically not more than what
one could do with a standard Prolog tracer becomes more useful through explicit
visualisation of the decisions the parser or the user made during the process.
The interface allows the user to inspect the structure predicted by the parser
after each step, but there is also the possibility of inspecting the structure at
previous stages because all the data on each step are stored and made browsable
by the debugger.

Figure 1 shows a typical state of the GUI after some parsing steps. The in-
teractive decision tree visualizes each step or decision point by a node, and it
branches out if the parser backtracked to a previous decision point. By clicking
on nodes of the decision tree, the user may inspect the parser’s state at each
point in history. The hypothetical tree maintained by the parser at the currently
selected decision point is visualized in a panel below the decision tree. A parsing
status message at the bottom of the window explains verbally the last step the
parser performed to arrive at the current structure hypothesis. By means of
the five buttons on the control panel, the user may steer the parsing process
by confirming or rejecting hypothetical structures, influencing the backtracking
behaviour of the Prolog parser.

All the components of the GUI and their interactions are described in detail
in the following sections.

4.1 Controlling the Parsing Process

The graphical debugger allows for the user to steer the parsing process by means
of the five buttons in the control panel.

Continue: This simply allows the parser to continue to the next step, no steer-
ing directive involved. Continuously clicking this button will cause the parser to
incrementally explore the entire structure search space and to try out all alter-
natives until the first parse is found. Then, the parser will stop. The behaviour
of Continue is equivalent to the “creep” directive in a standard Prolog tracer.

Johannes Dellert 4 lc-parse-gui

4.1 Controlling the Parsing Process Page: 5

Figure 1: The graphical debugger and its components

Johannes Dellert 5 lc-parse-gui

4.2 Interpreting the Decision Tree Page: 6

Reject: This serves to reject the current structure hypothesis, causing the
parser to fail on the current branch of the decision tree. All variants that build
on the rejected hypothesis will not be explored. Can be used to prune pre-
dictions that will not lead anywhere, or to block the solution usually found in
order to explore alternative parses. The behaviour of Reject is equivalent to
the “fail” directive in a standard Prolog tracer.

Confirm: Tells the parser to only explore possible parses that build on the
currently predicted structure. If the parser fails to find such a parse, it will
not backtrack beyond this point and try to find a parse starting from previous
hypotheses, but it will fail. Can be used to explicitly avoid many branches that
would otherwise have to be cut using Reject to achieve the same effect. On the
Prolog side, this corresponds to introducing a cut into the currently evaluated
predicate. There is no equivalent to this in a standard Prolog tracer.

Auto-Complete: Tells the parser to automatically Continue as fast as pos-
sible. This will cause the decision tree to grow very fast, and is very useful
for jumping over uninteresting parts of the parsing process without having to
click on the Continue button many times. Auto-complete mode can always be
cancelled by clicking on one of the other buttons. This can be used to approxi-
mate the behaviour of the “skip” directive in a standard Prolog tracer, with the
advantage that skipped steps can still be investigated because their details are
also handed on to the GUI.

Abort: Causes the parsing process to be aborted. Very useful if two parses
are to be compared, because this will leave the debugger window open while at
the same time aborting the Prolog query to make the Prolog console free for
user input again. The user can then recompile the grammar or start another
parse and thus graphically compare the actions of the parser on different inputs
or with a modified grammar.

4.2 Interpreting the Decision Tree

This section explains the semantics of the decision tree, what the different edge
labels and node colors mean, and how this information can be used to find bugs
in a parser.

The basic idea of the decision tree visualization is to make the parsing process
as transparent as possible by showing to the user how the parser backtracks to
explore all possible solutions. Whenever a new structure hypothesis is reached
by performing a parse step starting from the hypothesis associated with some
node in the decision tree, that node will spawn a new child node. This means
that an entirely deterministic parser that does not have to backtrack will have
just one long branch as its decision tree. If at some point the parser has multiple
choices to consider, sooner or later the decision tree will branch at that point,
provided that the parser does not already find a parse resulting from the first
choice. The nodes of the tree are numbered in order of generation, allowing the
user to see even at later stages in which order the tree was constructed.

Johannes Dellert 6 lc-parse-gui

4.3 Exploring the Parsing History Page: 7

In principle, there are three kinds of steps the parser can perform at each point:
it can scan input symbols, predict new structure and complete predicted struc-
tures. Those three alternatives are mirrored by the labels of the decision tree
edges, providing information on which step allowed the transition from one
parser state to the next:

“WORD”(CAT): Edge labels of this format mean that the input symbol
word was scanned and interpreted to be of category cat. The partial parse tree
will be enlarged by a dangling leave node, and in the next step the parser will
try to integrate this new node into its structure hypothesis.

try LHS → RHS: This means that a new substructure was predicted to
accomodate the current dangling leaf by means of the phrase structure rule
rule(LHS,RHS). Usually, the first symbol on the RHS of the predicted sub-
structure will be used to attach the leaf, and now the substructure has to be
completed by filling in structures for the other parts of the RHS.

cpl CAT: The parser has managed to complete one of the gaps in the hy-
pothetical parse tree by recogizing that a dangling leaf of category CAT can be
linked to an incomplete predicted branch further up in the structure.

Some of the nodes in the decision tree are colored, with the following intended
meanings:

Red color marks nodes in the decision tree at which the user pressed the
Reject button, causing the parser to not consider branches starting at this
node any longer. This visualizes the direct correspondence between rejection
of structure hypotheses and cutting off decision tree branches. If a parse unex-
pectedly failed, the user should check back on all the red nodes whether all the
structure rejections were justified.

Green color marks nodes in the decision tree at which the user pressed the
Confirm button, causing the parser to not spawn any more decision tree branches
above this node. The cut introduced by structure confirmation thus kills all the
branches above it, limiting the growth of the decision tree to the part below
the cut. In case of unexpected parse failure, the user should also check that the
expected parse could really have been generated from the hypothesis confirmed
at the green node deepest down in the tree.

Yellow color marks the currently selected decision tree node. The structure
hypothesis the parser had at this stage is displayed in the parse tree view, and
a more verbose description of the step leading to that structure is displayed in
the parser status display.

4.3 Exploring the Parsing History

The main advantage of the graphical debugger is the possibility to inspect the
structure hypothesis of the parser at each point in history. A click on a node
in the decision tree will select that node and display the information the parser
had at that stage in the bottom section of the screen.

Johannes Dellert 7 lc-parse-gui

Page: 8

The parse tree hypothesis displayed is in essence an incomplete parse tree repre-
senting the knowledge (or assumptions) of the parser about the sentence struc-
ture at a given point. This hypothetical structure might include gaps where the
parser is still unsure how to link parts of the tree, delaying the decision which
intervening structure will link two tree fragments in the end. In the parse tree
display, such a situation is represented by a dotted line.

The parser status message displayed under the parse tree hypothesis once more
expresses in a more verbose manner what is already displayed on the decision
tree edge leading to the currectly selected node. The status message can thus
be seen as a verbal description of the last change to the parse tree hypothesis.
This is also the place where the message about the parser’s success will appear
after completion of the parsing process.

5 Technical Details

This chapter is primarily intended for readers with technical interest in the in-
ternals of the system. Some of the more interesting points about the parser’s
architecture are explained and motivated.

The first section features an overview of the core parser’s Prolog implementation.
Some important predicates, their tasks and their interaction are explained. The
second section explains in detail how Jasper was used to let the Prolog process
spawn a Java Swing window, and how information exchange between Prolog
backend and Prolog frontend is achieved. The last section briefly comments on
the design of the graphical debugger, focussing on data structures and decision
tree construction.

5.1 Parser Architecture

The core of lc-parser-gui are the predicates whose interaction steers the pars-
ing process. This task is fulfilled by the four predicates parse/2, parse word/8,
parse list/8, and complete/9. The tasks fulfilled by each of these predicates
are as follows:

parse/2 provides the user with the interface to start a parse. Its signature
is parse(+Category,+Sentence), where Category is a category as used on the
left-hand side of rules in the grammar, and Sentence is a list of atoms repre-
senting the tokens of a sentence. This predicate opens the GUI window (more
on this later), initializes an internal structure called the prediction stack that
represents the parse tree hypothesis, and calls parse word/8 to perform the
parse.

parse word/8 essentially performs a scan step, removing the next symbol
from the input list and looking up its category in the grammar. Then it calls
complete/9 to integrate the new leaf into the parse tree.
The signature of this predicate is parse word(+C,+InputList,-NewInputList,
+PdctStack,-NewPdctStack, +JavaEnv, +StackTrace, -FinalStackTrace),

Johannes Dellert 8 lc-parse-gui

5.2 Java-Prolog communication Page: 9

where C is the goal category, InputList and NewInputList as well as PdctStack
and NewPdctList are the input lists and the prediction stacks before and after
execution. JavaEnv contains the Java environment needed to transmit the step
information to the GUI, see the next section for more information. StackTrace
and FinalStackTrace are lists of numerical IDs that are used to determine the
position in the decision tree before and after execution of the predicate.

parse list/8 is called after a prediction step to complete missing symbols on
the right-hand side of the rule used for the prediction. It recurses down the
list of missing symbols, calling parse word/8 once at each step to find material
that can fill the holes in the structure.
The signature is parse list(+CatList,+InputList,-NewInputList,
+PdctStack,-NewPdctStack,+JavaEnv,+StackTrace,-NewStackTrace),
with the same meanings as for parse word/8, except that the first argument is
now a list of categories that still have to be processed to complete the current
prediction.

complete/9 serves two different purposes in trying to integrate newly parsed
symbols into the structure. If the symbol currently processed fits into a hole
in the prediction stack, complete/9 will plug the two matching tree fragments
together and thus reduce the prediction stack (the cpl case in the GUI). If the
current symbol does not fit into any hole, complete/9 will predict intermediate
structure that might be integrated later, enlarging the prediction stack (rule ap-
plication case in the GUI). In the latter case, the new structure will introduce a
new list of unmatched symbols that have to be filled using parse list/8 before
the new structure can be linked to the prediction stack by means of a recursive
call to complete/9.

The internal format for the prediction stack is a list of pairs of prolog lists.
Each entry in the list corresponds to one level of structure that has not yet been
linked to structure at higher levels. In the visualisation, the tree fragments
contained in different levels of the prediction stack are linked by dotted lines.
An entry in the stack is a Prolog list of length 2, where the first entry of the
list contains a tree fragment encoded as a nested list, and the second entry is a
list representing the current holes in the structure. Each entry in the hole list
is bound to a hole location in the structure and contains a variable that allows
for comparatively easy structure plugging by unification.

5.2 Java-Prolog communication

By means of the Jasper library, it is possible to handle a Java Virtual Machine
as an object bound to a Prolog variable. Using this object, the Jasper library
can create instances of Java classes, and this includes classes inheriting from
JFrame that represent GUI windows in Java’s Swing library. The JVM object
together with the instantiated GUI class are handed on to all the predicates
during the parsing process as a pair contained in the JavaEnv variable.

All the methods of the GUI class that are to be called by Prolog must be
declared beforehand. This is achieved by declaring clauses of the predicate
foreign/3, the arguments being a clause of method/3 that contains informa-

Johannes Dellert 9 lc-parse-gui

5.2 Java-Prolog communication Page: 10

tion on the Java name of the predicate, the atom java and the prolog signature
of the predicate (with the Java object as its first argument) that will correspond
to the external method, e.g.

foreign(method(’LCParserGUI’,’parsingFailure’,[instance]),
java,parsing_failure(+object(’LCParserGUI’))).

The calling of such predicates is wrapped into the predicate call foreign meta/2,
which is defined in the source code by the following clause:

call_foreign_meta(JVM, Goal) :-
functor(Goal, Name, Arity), % extract predicate name
functor(ArgDesc, Name, Arity), % build template
foreign(Method, java, ArgDesc), % look it up
!,
jasper_call(JVM, Method, ArgDesc, Goal).

This predicate is used by helper predicates used suring parsing to send messages
to the frontend, as for example

notify_failure([LCParserGUI,JVM], Result) :-
call_foreign_meta(JVM,parsing_failure(LCParserGUI)).

In the same way, the parsing predicates transmit the information that they have
been called to the GUI along with the current states of the prediction stack and
the call stack. For each of these purposes, the LCParserGUI class has a special-
ized method that processes these pieces of information to build a model of the
parsing process that it allows the user to explore.

In the other direction, information on the buttons clicked by the user on the
frontend has to be transmitted back to Prolog. This is implemented in a clas-
sical polling pattern. In principle, whenever one parsing step is completed, the
Prolog backend enters a loop, calling ten times a second a specialized method
of the LCParserGUI class that returns the ID of the clicked button. As long as
the user has not clicked on any button, the ID none is returned and the loop
continues. As soon as teh user clicks a button, a field of the Java class changes
its value, causing the method to return a value that the parser can react to.
This is how the loop is implemented:

await_gui_guidance(JavaEnv, Pressed) :-
wait_until_button_pressed(JavaEnv,Pressed), !.

wait_until_button_pressed(JavaEnv,Pressed) :-
repeat,
sleep(0.1),
pressed_button(JavaEnv,Pressed),
((Pressed == ’confirm’);
(Pressed == ’continue’);
(Pressed == ’reject’);
(Pressed == ’auto_complete’);
(Pressed == ’abort’);
(Pressed == ’close_window’)).

Johannes Dellert 10 lc-parse-gui

5.3 Graphical Debugger Page: 11

The following block of Prolog code is part of the definition of each parsing
predicate and determines the parser’s reactions to the different possibilities of
user input:

await_gui_guidance(JavaEnv, Signal),
(
(
Signal == ’abort’,
abort

);
(
Signal == ’close_window’,
terminate_gui_execution(JavaEnv),
abort

);
(
Signal == ’reject’,
fail

);
(
Signal == ’confirm’,
!

);
(
Signal == ’continue’

);
(
Signal == ’auto_complete’

)
)

This communication method is rather limited since it is only useful for trans-
porting small bits of information back to the Prolog side at very precisely defined
points, but it has the advantage of circumventing any need for communication
via ports or sockets.

5.3 Graphical Debugger

The Java classes for the graphical debugger are structured in a standard man-
ner, without any surprising technological choices. The only point that needs
to be explained here is how the model of the parsing process is built from the
information that comes in from Prolog calling the methods designed for that
purpose. This touches upon the internal data structures for parsing history
handling as well as upon the conversion of the data the Prolog side provides.

Information about each parsing step and its corresponding decision tree nodes is
transmitted by calling addParseStepToHistory() with four string arguments:

stackState contains a linearization of the current prediction stack state in
Prolog. The tree hypothesis to be displayed by the GUI is already assembled
under Prolog using unification, all nodes that are to be linked to their parent

Johannes Dellert 11 lc-parse-gui

Page: 12

nodes by dotted lines are prefixed with a star symbol. When the linearization
is parsed by the debugger to form a tree structure that can be displayed, this
markup symbol is converted into the instruction to use a dotted line for the line
from the current node to the parent.

stepDescription is the status message that will later be displayed under the
tree hypothesis visualization. It can directly be taken over as a string.

shortDescription is the label for the edge linking the current parsing state
to its parent in the decision tree. This will be added to the decision tree model.

callTrace is a list of integers that determines the location of the new node
in the tree. After parsing this into a Java array of integers, the first entry is
interpreted as the new decision tree node ID, and all the other pieces of infor-
mation will be stored in a lookup structure under this ID. The other integers on
the list are used to construct an ancestor path for the new node in the decision
tree model, and the tree model is adapted accordingly.

The call stacks are built on the Prolog side by retrieving a call ID for each
call of a parsing predicate and pushing this on top of the list representing the
call stack. The difference to a call trace is that when a called predicate succeeds
and the calling predicate is continued, the ID of the called predicate does not
vanish from the stack. The call stack should perhaps rather be called a decision
stack, since the only point at which items are taken out of the stack is when
Prolog backtraces to a point where some of the predicate calls that occurred
later were not yet executed. This explains why the decision tree only branches
at decision points and not as soon as a predicate calls multiple other predicates.

6 Known issues

• On certain systems, there might be problems with the relative classpath
the system uses to tell Jasper where it can find the Java classes. In such
cases, it usually helps to change the code to absolute classpaths. In effect,
this means that the user must change the definition of get JVM/2, which
in the distributed version looks like this:

get_jvm(JVM) :-
jasper_initialize([classpath(’./bin’)],JVM).

If you change the classpath to point to the bin folder in your installation
directory, this will usually help, so change it e.g. to the following:

get_jvm(JVM) :-
jasper_initialize([classpath(’/home/jdoe/lc-parse/bin’)],JVM).

• Sometimes, the decision tree display tends to flicker once the GUI has
been fired up. This is due to a bug in Swing, and there is not much you
can do about it except forcing the window to redraw, e.g. by temporarily
dragging another window over the debugger window or by minimizing and
maximizing it once.

Johannes Dellert 12 lc-parse-gui

REFERENCES Page: 13

References

M. A. Covington (1994). Natural Language Processing for Prolog Programmers.
Prentice Hall, Upper Saddle River, New Jersey.

E. T. Irons (1961). ‘A syntax directed compiler for ALGOL 60’. Communications
of the ACM 4(1):51–55.

P. Resnik (1992). ‘Left-corner parsing and psychological plausibility’. In Pro-
ceedings of the 14th conference on Computational linguistics, pp. 191–197,
Morristown, NJ, USA. Association for Computational Linguistics.

D. J. Rosenkrantz & P. M. Lewis (1970). ‘Deterministic left corner parsing’.
In Proceedings of the 11th Annual Symposium on Switching and Automata
Theory, pp. 139–152, Los Alamitos, CA, USA. IEEE Computer Society.

SICStus (2007). SICStus Prolog User’s Manual, Release 3.12.8. Intelligent
Systems Laboratory, Swedish Institute of Computer Science.

Johannes Dellert 13 lc-parse-gui

